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Abstract

A standard method for visualizing vector �elds con-

sists of drawing many small \glyphs" to represent

the �eld. This paper extends the technique from reg-

ular to curvilinear and unstructured grids. In or-

der to achieve a uniform density of vector glyphs on

nonuniformly spaced grids, the paper describes two ap-

proaches to resampling the grid data. One of the meth-

ods, an element-based resampling, can be used to vi-

sualize vector �elds at arbitrary surfaces within three-

dimensional grids.

1 Introduction

Numerous algorithms for visualizing vector �elds

have been published. One well-known method, some-

times called an \arrow plot," draws many small line

segments or \glyphs" to represent the �eld. The algo-

rithm is relatively inexpensive and can be used with

both 2D and 3D data.

The \arrow plot" algorithm is usually applied to

curvilinear and unstructured grids by drawing the

glyphs at the grid nodes or at the element centers.

There are several disadvantages to this approach. One

drawback is that more glyphs are placed in areas where

the elements are small than in areas where the ele-

ments are large. This variation in glyph density is

unrelated to the vector values themselves. A second

drawback is that regularity in the grid causes distract-

ing patterns in the output image. Lastly, the user has

no control over the glyph spacing in this scheme. In

order to alleviate these problems, it is necessary to re-

sample the grid data. Two approaches to resampling

the grid are described and compared in this paper.

In the next section, related previous work in the

area of vector visualization is reviewed. Section 3 sum-

marizes the algorithm for regular grids. Sections 4

through 7 extend the algorithm to unstructured grids.

Some practical techniques for interactively rendering

the vector glyphs are described in section 8. Examples

and conclusions are discussed in the last two sections.

2 Related work

A set of visualization techniques for ow �elds is

based on particle advection. Examples include particle

paths, particle streams, ow ribbons and ow volumes.

These techniques work well for velocity �elds but are

not necessarily applicable to other vector �elds. In

electromagnetic wave data, for example, there are

periodically-spaced regions at which the magnitude of

the electric and magnetic �elds is zero | so the data

doesn't lend itself to long ow curves. Another con-

sideration with advection-based techniques is that in

order to gain a global picture of a ow �eld, one may

need to advect many particles through a volume. This

incurs a substantial computational expense and is dif-

�cult to achieve at interactive rates.

Craw�s and Max [3] describe a method for direct

volume visualization of vector glyphs (drawn as small

line segments) which allows them to be displayed in

combination with a scalar �eld on regular grids. Since

our method is derived from theirs, we will return to

this paper later.

In [4], Craw�s and Max modify their technique for

volume visualization of vector and scalar �elds by ren-

dering textured splats to the screen. The splatting

algorithm makes use of hardware support for polygon

texture-mapping in order to achieve interactive perfor-

mance. Splatting-based techniques and other methods

for rendering velocity �elds near contour surfaces are

discussed in [9]. All of these methods were developed

for regular grids.

An algorithm by van Wijk [13] shows ow direc-

tion on a parametric surface by rendering an oriented

texture on the surface.

Cabral and Leedom [2] developed a \Line Integral

Convolution" (LIC) algorithm for textured display of

ow �elds. The method generates an oriented texture

by convolving a local streamline with random noise at

each cell in a 2D regular grid. The LIC algorithm was

extended to surfaces of curvilinear grids by Forssell

[5]. Some weaknesses of the algorithm are that it only

shows the component of the vector �eld that lies in

the surface being textured and that it has not been
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extended to unstructured grids.

3 Regular grids

The algorithm for regular grids is reviewed in this

section, and extended to unstructured grids in later

sections. Following [3], we overlay the computational

grid with a second regular grid: the vector grid. The

algorithm selects a random point in each cell of the

vector grid and linearly interpolates the vector �eld

values from the computational grid to the selected

point. An oriented, anti-aliased line segment centered

about the point is then drawn. We refer to the points

at which the glyphs are drawn as vector grid points.

Essentially, the algorithm samples the data on a jit-

tered regular grid. Jittering is required in order to

avoid aliasing that occurs with a regular sampling grid

[3]. The user selects the spacing of the vector grid and

also controls the absolute length of the glyphs.

If the vector �eld is three-dimensional, the ren-

dering order is important. Back-to-front rendering

is necessary because of the way most hardware im-

plements anti-aliased line drawing: partially covered

pixels along a line are blended with the previous val-

ues in the display bu�er. Since the vector points are

generated on a semi-regular grid, drawing the glyphs

from back to front (or approximately back to front)

is trivial. Of course, there is no guarantee that a line

segment with its center behind another won't extend

in front of the second line segment, but occurence of

this case tends to be minimized by the coherence of

the �eld.

4 Finite elements and interpolation

Sections 5 and 6 introduce two di�erent methods

for displaying vector plots on curvilinear and unstruc-

tured grids. Before the methods are introduced, it is

helpful to review some concepts from �nite element

analysis.

In this paper, we restrict ourselves to unstructured

grids composed of linear elements. The element types

of most interest are hexahedral and tetrahedral vol-

ume elements and quadrilateral and triangular thin

shell elements.

For isoparametric �nite elements, a set of shape

functions or interpolation functions both de�nes the

geometry of an element based on the element nodes

and interpolates quantities from the nodes to the in-

terior of the element. Points in the interior of a hex-

ahedral or quadrilateral element are de�ned by their

Figure 1: Natural coordinates for a hexahedral and a

quadrilateral element.
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natural coordinates on the interval (-1, 1) (Figure 1.)

For a hexahedral element, interior points are speci�ed

by

P (u; v; w) =

8X

i=1

Ni(u; v; w)Pi (1)

Ni =
1

8
(1 + uui)(1 + vvi)(1 + wwi)

Here, (u; v; w) are the natural coordinates of the in-

terior point, Ni are the shape functions, Pi are the

global coordinates of the corner nodes, and (ui; vi; wi)

are the natural coordinates of corner node i. Similarly,

for a 2D or 3D quadrilateral element,

P (u; v) =

4X

i=1

Ni(u; v)Pi (2)

Ni =
1

4
(1 + uui)(1 + vvi)

Linear interpolation is accomplished on triangular

and tetrahedral elements with barycentric coordinates.

For a triangle with vertices P1, P2, and P3, a point P

inside the triangle is given by its barycentric coordi-

nates (r; s; t) in the range (0, 1).

P (r; s; t) = rP1 + sP2 + tP3 (3)

r + s+ t = 1



The barycentric coordinates for a tetrahedron are

analogous.

P (r; s; t; u) = rP1 + sP2 + tP3 + uP4 (4)

r + s+ t+ u = 1

In either case, the shape functions are simply

N1 = r;N2 = s; : : :

Note that barycentric coordinates lie on a di�erent

interval than natural coordinates.

Interpolating a result value to an arbitrary point

in an unstructured grid involves locating the element

that contains the point, calculating the natural coor-

dinates or barycentric coordinates of the point with

respect to the element, and then interpolating the re-

sult value from the element nodes to the point. Inter-

polation is performed with the shape functions. For

an element with n nodes, the result value at the point

is given by

R =

nX

i=1

NiRi (5)

Ri in the above equation is the result value at node i.

The reader may refer to a �nite element text such

as [14] for more information on this topic.

5 Physical space resampling

A natural solution to the problem of varying grid

density is to resample the vector �eld data on a regular

or jittered regular grid. The main issue that must be

addressed with this method is the cost of initializing

the vector grid.

The most expensive step in the procedure for inter-

polating a result value to an arbitrary point is locating

the element that contains the point. This requires a

search through the grid elements until the enclosing

element is found. The search can be made more ef-

�cient with techniques such as hierarchical bounding

boxes or spatial partitioning or by making use of spa-

tial coherence. Even with one of these acceleration

methods, the search is expensive when repeated for

thousands of vector points in a large grid.

Our implementation utilizes hierarchical bounding

boxes to accelerate the point tests. At startup, the

grid is partitioned into groups of adjacent elements.

(Partitioning algorithms are surveyed in [6].) The

candidate point is tested against the bounding box

for a group of elements before being tested against

the bounding box of each element in the group. If

both tests pass, then an iterative procedure deter-

mines whether the point actually lies inside the ele-

ment. For e�ciency, all bounding boxes are cached in

advance. Using hierarchical bounding boxes, we �nd

that it takes from several seconds to several minutes

to solve the \point in element" problem for all vector

grid points within a 3D unstructured grid.

The discussion that follows assumes a static com-

putational grid. To support interactive animation of

transient vector �elds, we process the vector grid once

during an initialization step and calculate, for each

vector point, the element that contains the point and

the natural coordinates of the point on that element.

This information is stored and used to update the re-

sult values at the vector points as the animation steps

through time. The sequence of steps for rendering a

vector glyph is:

1. Interpolate the vector �eld to the vector point

(Equation 5.)

2. Calculate the physical coordinates of the vector

point (Equations 1-4.)

3. Draw the oriented glyph at the point.

The vector glyphs are drawn from back to front by

traversing the vector grid in the proper order.

6 Parameter space resampling

In an e�ort to avoid the expense of initializing the

vector grid points, parameter space resampling was

developed. The idea is to generate random points di-

rectly in the natural coordinates of the elements using

an area-weighted (or volume-weighted) distribution.

The natural coordinates are then mapped to physi-

cal coordinates in the grid. This method relies on the

assumption that, with a relatively dense resampling,

the precise distribution of the individual points is not

critical as long as the overall density is correct. The

key to the approach is to make sure the vector points

are distributed with uniform probability in physical

space.

To begin, consider a 2D grid composed of quadrilat-

eral or triangular elements. The user selects a vector

grid density, D, which is the number of vector glyphs

to be drawn per unit area. The rendering algorithm

visits each element in turn. The number of vector

points to be generated for the element is calculated

by multiplying the area of the element, Ai, by the

vector density. We use a random number generator to

decide whether a vector point will be generated for a



particular element as a result of the fractional part of

the vector count.

The number of vector glyphs to be drawn in an

element is given by Nvec in the pseudo-code below.

Nvec = floor( D � Ai )

if ( random() <= mod(D � Ai, 1) )

Nvec = Nvec + 1

The floor() function rounds a number down to the

closest integer, mod() returns the remainder of the �rst

argument divided by the second, and random() gen-

erates uniformly distributed pseudo-random numbers

in the range (0, 1).

Once the number of vector points for a quadrilat-

eral element has been calculated, the natural coor-

dinates of each point are randomly generated in the

range (-1, 1) by two calls to random(). The vector

�eld is interpolated to each vector point from the ele-

ment nodes (Equation 5) and the physical coordinates

of the points are computed (Equation 2.) We may

then render the vector glyphs at the points.

This approach deposits points in a quadrilateral el-

ement with uniform probability as long as opposite

sides of the element are nearly parallel. If an element

has a trapezoidal shape, one can obtain a uniform

probability for the vector points by splitting it into

two triangles and then using the method for triangles.

The method for obtaining a proper distribution of

vector points within a triangular element is based on

barycentric coordinates. (See [11] for an alternate ex-

planation.) Recall that a point P inside a triangle is

given by its barycentric coordinates (r; s; t), where

P (r; s; t) = rP1 + sP2 + tP3

Holding the value of r constant yields a line segment

parallel to the triangle edge P2P3 (Figure 2.)

To �nd the proper distribution of points on the tri-

angle, we compute the length of a line segment PaPb

which is de�ned by a constant value of r (Figure 2.)

From the de�nition of barycentric coordinates,

kP1Pak = (1� r)kP1P2k

kP1Pbk = (1� r)kP1P3k

By similar triangles,

kPaPbk = (1� r)kP2P3k

The line segment de�ned by r = 0:5 is half as long as

P2P3. By comparing the area of thin strips centered

about the two line segments and taking the limit as

the width of the strips approaches zero, we �nd that

Figure 2: Isoparametric lines in barycentric coordi-

nates.
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the probability that r = 0:5 is half the probability that

r = 0. In general,

Probability(r) = (1� r)Probability(0) = (1� r)C

where C is a constant. In other words, the probability

distribution is a linear ramp with zero probability at

r = 1 and maximum probability at r = 0. We are

interested in the relative probability of di�erent values

of r, so C is arbitrary.

A random value in the range (0, 1) with the desired

linear ramp probability distribution can be generated

as follows (see [7].)

r = 1 - sqrt(random())

A point is equally likely to fall at any position along

the line segment de�ned by a constant value of r, so

s and t may be chosen at random with the constraint

that r + s+ t = 1. The constraint implies that s and

t must be in the range (0; 1� r). Random barycentric

coordinates may be generated:

r = 1 - sqrt(random())

s = (1 - r)*random()

t = 1 - r - s

Given these randomly distributed points in 2D, one

can draw the vector glyphs interactively as before.

The previous approach extends trivially to surfaces

in 3D. For example, it can be used to show a vector

�eld on the exterior faces of a 3D curvilinear grid. The

only change is that we need to insure that the vector

points are rendered in back-to-front order. One could

sort the faces back-to-front [10] before generating and

drawing the vector glyphs, but it is simpler and usually

more e�cient to generate the vector points and sort

the points in back-to-front order before rendering.



The technique for triangles enables us to carpet ar-

bitrary surfaces within a 3D grid. For example, sur-

faces of intersection of a cutting plane with a grid or

isocontour surfaces generated by the Marching Cubes

algorithm [8] are composed of triangular facets. These

surfaces can be generated within regular or unstruc-

tured grids. In order to correctly interpolate the vec-

tor �eld from the nodes of the grid to the vector points,

we �rst generate the vector points on a triangular

facet and then calculate the natural coordinates of the

points with respect to the 3D volume element in which

the facet is embedded.

The technique for quadrilateral elements extends

trivially to hexahedral elements. The technique for

triangles extends to tetrahedra, with one minor dif-

ference. If one calculates the area of the triangle de-

�ned by a constant value of r in a tetrahedron, one

�nds that the correct probability distribution for r is

(1� r)2C. Hence, random barycentric coordinates for

a tetrahedron are generated as follows.

r = 1 - cbrt(random())

s = (1 - r)*(1 - sqrt(random()))

t = (1 - r - s)*random()

u = 1 - r - s - t

We omit the proof for brevity, but note that the cube

root is needed to generate the desired quadratic prob-

ability distribution [7]. As before, points that are gen-

erated in a volume grid must be sorted before render-

ing.

7 Discussion of methods

It's useful to compare the previous two methods in

terms of speed and image quality. We consider speed

�rst.

The physical space resampling method requires an

expensive initialization, but then the user can modify

the view with no additional cost since the sort is triv-

ial. The parameter space resampling eliminates the

initialization cost but requires that the vector points

be re-sorted each time the view changes. The e�-

ciency of the two methods is dependent on the imple-

mentation, but an example should help indicate the

general di�erences.

We generated 16,000 sample points on a small 3D

grid containing 14,000 hexahedral elements. Initial-

izing the points for the physical space resampling re-

quired 25.2 seconds with hierarchical bounding boxes,

and 186.0 seconds without the hierarchical test (but

still using bounding boxes for the elements.) Sort-

ing 16,000 points in the parameter space method re-

quired 1.4 seconds. In either case, rendering required

12 seconds with antialiasing and 2 seconds with no an-

tialiasing. All times are for an SGI Indigo Elan R3000

workstation.

One can reduce the cost of sorting in the parame-

ter space resampling method by generating the vector

points in parameter space and then storing them in a

voxel grid. That way, the program only needs to sort

the points within each voxel when the view changes.

This \hybrid method" may be useful if the sorting

time is found to be a bottleneck.

In terms of image quality, there are some di�erences

between the two algorithms. The parameter space re-

sampling method allows the density of glyphs to vary

from element to element, as a result of rounding the

fractional part of the glyph count. The physical space

resampling maintains a constant density from cell to

cell. Thus, the parameter space resampling permits

more local variation in the vector point distribution,

but this tends to be less noticeable as the vector den-

sity increases. In general, images generated with the

same sampling density by the two methods show some

di�erences in the amount of \clustering" but are not

drastically di�erent in quality (Figures 3{5.)

In a Lagrangian analysis setting (i.e. simulations

where the nodes of a grid may move as the material

deforms), one can either regenerate the vector grid

points at each timestep or retain the old vector grid

points in parametric coordinates. In the latter case,

the vector points may change physical position as the

elements are distorted. The point distribution should

remain relatively uniform unless individual elements

undergo a signi�cant change in volume, which is un-

common in practice. If the old vector points are re-

tained, they should be re-sorted at each new timestep

to maintain the back-to-front rendering order.

8 Rendering techniques

The following paragraphs look at some ways to dis-

play particular aspects of a vector �eld and to address

di�culties associated with vector plotting.

Vector magnitude can be shown by scaling the

lengths of the individual vector glyphs. Another way

to show magnitude is by colormapping the glyphs |

that is, the hue of each glyph is selected by a lookup

in a color table. These two methods can be used si-

multaneously.

A line segment shows the local orientation of the

�eld, but does not show whether the �eld is pointed

in the positive or negative direction along that line.



Figure 3: Velocity �eld with vectors drawn at the grid

nodes.

Figure 4: Physical space resampling.

Figure 5: Parameter space resampling (same sampling

density as Figure 4.)

The standard technique for showing vector direction

is to draw an arrowhead at one end of the line segment.

This increases the rendering cost (particularly for 3D

vectors) and can clutter a dense image. An alternate

way to show vector direction is to vary the hue along

the length of the line segment. For example, make

the tail end of the vector green and the head end red,

with linear interpolation of the two colors in between.

If the vector glyphs are being colormapped, one can

colormap one end of the glyphs and set the other end

to a constant color in order to show direction.

Max [9] points out that the 2D projection of a 3D

line segment is ambiguous, since many 3D segments

can have the same projection. Hence, it is di�cult to

see how 3D vector glyphs are oriented with respect to

the viewer unless the view is rotated interactively or

unless the glyphs themselves are animated. One way

to partially overcome this problem is to modulate the

brightness over the length of the glyph. If the vec-

tor is parallel to the view direction, the brightness of

the farthest end from the viewer is scaled to zero (or

to some value between zero and one) while the closest

end is drawn at full brightness. If the vector is perpen-

dicular to the view direction then both ends are drawn

at full brightness. At other angles, the end values are

interpolated between these extremes. The purpose of

this technique is to give the vector glyphs an exagger-

ated appearance of perspective scaling. Another way

to help show line orientation is with simulated light-

ing, a subject which other researchers have covered

well [1].

If the vector grid is dense then vectors that are close

to each other may overlap, making them indistinguish-

able. This can be addressed by jittering the brightness

of the vectors as in [9].

When rendering 3D data, values in the middle or

rear of the volume tend to be obscured by values at

the front of the volume. Often, the best technique for

visualizing the interior of a 3D grid is to display the

vector glyphs at a planar slice through the grid. The

slicing plane can be moved through the volume to let

the user view all parts of the model.

9 Examples

Figures 6 to 10 illustrate a uid dynamics problem

in which an incompressible uid ows past a cylindri-

cal post and a plate (the plate is at the bottom of

the grid.) The grid in this example was treated as

unstructured. Figures 7 and 8 show the velocity at

a horizontal cut plane. Vortices which form behind

the post and are carried downstream by the ow are





visible in the images. The relative magnitude of the

velocity �eld is shown in Figure 7; the direction of ow

is emphasized in Figure 8. In Figure 8, the tails of the

vector glyphs are magenta and the heads are yellow.

Regions of the cut plane that are more yellow or more

magenta show areas where the ow direction is par-

tially out of the cut plane. Figure 9 shows vorticity at

the cut plane. Vorticity is a vector �eld which mea-

sures the local change in velocity. Figure 10 shows the

ow velocity at six isosurfaces of pressure.

A snapshot of the electric �eld in an electromag-

netic wave simulation is shown in Figure 11. The wave

travels from left to right in the image, and its energy

is deected downward by the window in the center.

Figures 7 to 10 were generated with parameter

space resampling, and Figure 11 was generated with

physical space resampling.

10 Conclusion

Vector plots provide a way to interactively visu-

alize vector �elds. The technique can be used with

2D and 3D vector data on regular and irregular grids.

For unstructured grids, physical space and parameter

space resampling methods were described. Parameter

space resampling is e�cient and allows us to visual-

ize vector �elds at arbitrary 3D surfaces. Physical

space resampling guarantees that sample points are

well-distributed.
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